Search results for "Critical groups"

showing 8 items of 8 documents

Constant sign and nodal solutions for nonlinear robin equations with locally defined source term

2020

We consider a parametric Robin problem driven by a nonlinear, nonhomogeneous differential operator which includes as special cases the p-Laplacian and the (p,q)-Laplacian. The source term is parametric and only locally defined (that is, in a neighborhood of zero). Using suitable cut-off techniques together with variational tools and comparison principles, we show that for all big values of the parameter, the problem has at least three nontrivial smooth solutions, all with sign information (positive, negative and nodal).

010102 general mathematicsMathematical analysisMathematics::Spectral Theory01 natural sciencesLocally defined reactionTerm (time)Critical groups010101 applied mathematicsNonlinear systemConstant sign and nodal solutionsSettore MAT/05 - Analisi MatematicaModeling and SimulationQA1-9390101 mathematicsNonlinear maximum principleConstant (mathematics)NODALMathematicsAnalysisSign (mathematics)MathematicsNonlinear regularity
researchProduct

Nonlinear nonhomogeneous Neumann eigenvalue problems

2015

We consider a nonlinear parametric Neumann problem driven by a nonhomogeneous differential operator with a reaction which is $(p-1)$-superlinear near $\pm\infty$ and exhibits concave terms near zero. We show that for all small values of the parameter, the problem has at least five solutions, four of constant sign and the fifth nodal. We also show the existence of extremal constant sign solutions.

Applied MathematicsConcave termnodal solutionMathematical analysisZero (complex analysis)superlinear reactionDifferential operatorExtremal constant sign solutionNonlinear systemMaximum principlemaximum principleNeumann boundary conditionextremal constant sign solutionsQA1-939superlinear reaction concave terms maximum principle extremal constant sign solutions nodal solution critical groupsconcave termsConstant (mathematics)critical groupsEigenvalues and eigenvectorsCritical groupMathematicsMathematicsSign (mathematics)Electronic Journal of Qualitative Theory of Differential Equations
researchProduct

On minimal non-supersoluble groups

2007

[EN] The aim of this paper is to classify the finite minimal non-p-supersoluble groups, p a prime number, in the p-soluble universe.

Finite group20F16Supersoluble groupbusiness.industryMathematical societyGeneral MathematicsGrups Teoria definite groupsAlgebraCritical groupPublishing20D10Àlgebrasupersoluble groupsFinite groupAlgebra over a fieldMATEMATICA APLICADAbusinesscritical groupsAlgorithmCritical groupMathematics
researchProduct

Pairs of solutions for Robin problems with an indefinite and unbounded potential, resonant at zero and infinity

2018

We consider a semilinear Robin problem driven by the Laplacian plus an indefinite and unbounded potential and a Caratheodory reaction term which is resonant both at zero and $$\pm \infty $$ . Using the Lyapunov–Schmidt reduction method and critical groups (Morse theory), we show that the problem has at least two nontrivial smooth solutions.

Pure mathematicsReduction (recursion theory)General Mathematicsmedia_common.quotation_subject010102 general mathematicsZero (complex analysis)Algebraic geometryRobin boundary conditionInfinity01 natural sciencesRobin boundary conditionNumber theoryresonance0103 physical sciencesLyapunov-Schmidt reduction method010307 mathematical physics0101 mathematicsindefinite and unbounded potentialcritical groupsLaplace operatorMathematicsMorse theorymedia_common
researchProduct

Solutions and positive solutions for superlinear Robin problems

2019

We consider nonlinear, nonhomogeneous Robin problems with a (p − 1)-superlinear reaction term, which need not satisfy the Ambrosetti-Rabinowitz condition. We look for positive solutions and prove existence and multiplicity theorems. For the particular case of the p-Laplacian, we prove existence results under a different geometry near the origin.We consider nonlinear, nonhomogeneous Robin problems with a (p − 1)-superlinear reaction term, which need not satisfy the Ambrosetti-Rabinowitz condition. We look for positive solutions and prove existence and multiplicity theorems. For the particular case of the p-Laplacian, we prove existence results under a different geometry near the origin.

Pure mathematicsnonlinear maximum principle010102 general mathematicsMathematics::Analysis of PDEssuperlinear reactionStatistical and Nonlinear PhysicsMultiplicity (mathematics)01 natural sciencesTerm (time)Nonlinear systempositive solutionSettore MAT/05 - Analisi Matematica0103 physical sciencesNonhomogeneous differential operatornonlinear regularity010307 mathematical physics0101 mathematicscritical groupsMathematical PhysicsMathematicsJournal of Mathematical Physics
researchProduct

A multiplicity theorem for parametric superlinear (p,q)-equations

2020

We consider a parametric nonlinear Robin problem driven by the sum of a \(p\)-Laplacian and of a \(q\)-Laplacian (\((p,q)\)-equation). The reaction term is \((p-1)\)-superlinear but need not satisfy the Ambrosetti-Rabinowitz condition. Using variational tools, together with truncation and comparison techniques and critical groups, we show that for all small values of the parameter, the problem has at least five nontrivial smooth solutions, all with sign information.

Pure mathematicsnonlinear maximum principlelcsh:T57-57.97General MathematicsMathematics::Analysis of PDEssuperlinear reactionMultiplicity (mathematics)extremal solutionsSettore MAT/05 - Analisi Matematicalcsh:Applied mathematics. Quantitative methodsConstant sign and nodal solutionExtremal solutionnonlinear regularityconstant sign and nodal solutionscritical groupsCritical groupMathematicsParametric statisticsOpuscula Mathematica
researchProduct

Solutions with sign information for nonlinear Robin problems with no growth restriction on reaction

2019

We consider a parametric nonlinear Robin problem driven by a nonhomogeneous differential operator. The reaction is a Carathéodory function which is only locally defined (that is, the hypotheses concern only its behaviour near zero). The conditions on the reaction are minimal. Using variational tools together with truncation, perturbation and comparison techniques and critical groups, we show that for all small values of the parameter λ > 0, the problem has at least three nontrivial smooth solutions, two of constant sign and the third nodal.

nonlinear maximum principleApplied Mathematics010102 general mathematicsFunction (mathematics)Differential operator01 natural sciences010101 applied mathematicsNonlinear systemGrowth restrictionSettore MAT/05 - Analisi Matematicaextremal constant sign solutionsApplied mathematicsnodal solutions0101 mathematicscritical groupsAnalysisNonlinear regularity theorySign (mathematics)Parametric statisticsMathematicsApplicable Analysis
researchProduct

Constant sign and nodal solutions for parametric anisotropic $(p, 2)$-equations

2021

We consider an anisotropic ▫$(p, 2)$▫-equation, with a parametric and superlinear reaction term.Weshow that for all small values of the parameter the problem has at least five nontrivial smooth solutions, four with constant sign and the fifth nodal (sign-changing). The proofs use tools from critical point theory, truncation and comparison techniques, and critical groups. Spletna objava: 9. 9. 2021. Abstract. Bibliografija: str. 1076.

udc:517.9electrorheological fluidsElectrorheological fluidMaximum principleMathematics - Analysis of PDEsSettore MAT/05 - Analisi MatematicaFOS: Mathematicsconstant sign and nodal solutionsAnisotropyanisotropic operators regularity theory maximum principle constant sign and nodal solutions critical groups variable exponent electrorheological fluidsParametric statisticsMathematicsvariable exponentVariable exponentApplied MathematicsMathematical analysisudc:517.956.2regularity theoryAnisotropic operatorsanisotropic operatorsTerm (time)Primary: 35J20 35J60 35J92 Secondary: 47J15 58E05maximum principleConstant (mathematics)critical groupsAnalysisAnalysis of PDEs (math.AP)Sign (mathematics)
researchProduct